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We have investigated the low-temperature transport properties of front-gagegGad N/ GaN
heterostructures. At zero gate voltage, the Hall mobility increases with decreasing temperature
(20 K=T=<190K) due to a reduction in phonon scattering. Fex20 K, the mobility decreases

with decreasing temperature. This is due to weak localization in a weakly disordered
two-dimensional system. By changing the applied gate voltage, we can vary the carrier density
from 3.11x 10" to 6.95< 10'2cm ™2 in our system. The carrier density shows a linear dependence
on the applied gate voltage, consistent with a simple parallel-plate capacitor model. The average
distance between the GaN electron system and the AlGaN/GaN interface is estimated to be 240 A.
At high carrier densities n(>4.65x 10?cm™2), the measured mobilitfw) is found to be a
decreasing function of carrier density @as-n~ %% Loss of mobility with increasing carrier density

is dominated by interface roughness scattering. At low carrier densitied 24x 102cm™2), the
measured mobility is found to be an increasing function of carrier densify-aa®34 This is
consistent with remote ionized impurity scattering, although the measured exponent 0.34 is smaller
than the typical valu¢0.7—1.5 observed in an AlGaN/GaN electron system. A possible reason is
that our sample mobility is approximately five times lower than those in other devices for a similar
electron density. ©2003 American Institute of PhysicgDOI: 10.1063/1.1594818

I. INTRODUCTION GaN electron systems. In this article, we report magne-

Recent efforts in developing IlI-V nitride family, InN, totransport measurements on a gated, ;4ba gN/GaN
GaN, and AIN have led to significant progress in improving€lectron system. At zero gate voltayg=0, the electron
material quality. Alloys and heterostructures based on thes@obility increases with decreasing temperature (20K
materials are therefore being studied with great intérést. <190K). This is due to the formation of the GaN two-
Due to the large band gap of AIGaN/GaN heterostructures, idimensional electron gd2DEG) near the AlGaN/GaN inter-
is ideally suited for making light-emitting diodes, lasers, andface and a reduction in phonon scattering. Fer20K, the
detectors operating in the visible to ultraviolet range as welklectron mobilitydecreasesvith decreasing temperature. We
as high-power transistors with operating frequencies in thescribe this to weak localization effects in a weakly disor-
microwave regior=’ It should be noted that in addition to dered systen® This result clearly demonstrates the exis-
proving semiconductors with large band gaps the nitridesence of weak localization effects in low-mobility GaN elec-
have two interesting features. One is a spontaneous polarizgon systems. By changing the applied gate voltage, we are
tion present in the structures as a result of the cation andble to vary the electron density in our system. The carrier
anion position in the lattice. In heterostructures the differ-densityn shows a linear dependence on gate voltage, consis-
ence between spontaneous polarizations of two layers can lpent with a parallel-plate capacitor model in which one plate
used to create a high carrier density. The other is the piezaf the capacitor is the metallic surface gate while the other is
electric polarization for a nitride system in heterostructureghe 2DEG. Our simple model allows us to estimate the aver-
with strain. The effective built-in internal fields can be pro- aged distance between the 2DEG and the AlGaN/GaN inter-
duced near the interface. These two features have been egee to be~ 240 A. Since our system is of lower mobility, it
ploited to design nominally undoped AlGaN/GaN high elec-a|iows us to study the mobility dependence on electron den-
tron m0b||llt‘)1/ transistors(HEMTs) with high sheet charge ity in the high disorder regime. The sample mobility is typi-
den5|tl|e58.‘. o _ o o cally five times lower than those of the other devices for a

Given its promising d_ewce apphcaﬂons, it is important gimilar electron density. At high (n>4.65x 10'2cm™2),
to understand the underlying physics of transport in AIGaNApe mobility x is a decreasing function af (u~n~°3%.

This can be ascribed to interface roughness scattering. At
3E|ectronic mail: ctliang@phys.ntu.edu.tw low n (n<4.65%x lOlzcmfz), M is an increasing function of
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FIG. 1. Magnetoresistivity measuremeptg as a function of perpendicular FIG. 2. Hall mobility as a function of temperatufe

magnetic field at/,=0.

resistivity shows a logarithmic dependence on temperature,
n (u~n%3). The possible physical origin for this is due to characteristics of weak localization effects observed in a
remote ionized impurity scatteri§;'’ although the expo- weakly disordered 2D electron systéfiThe decrease of the
nent 0.34 is smaller than the typical vali@&7-1.5ina GaN resistivity (~1%) is also consistent with the magnitude

electron systenti*® 1kel in a weakly disordered two-dimensional systém
wherekg is the Fermi wave vector ands the elastic mean
Il. EXPERIMENT free path, respectively. The amount of disorder within our

: : : 20
The sample that we studied is a front—gatedSyStem is larger than that in previous witk&?°thus we are

Al 1:Ga s N/GaN heterostructure. The following layer se- able to observe weak Iocgllzatlon effect§.|n our case.

. . Let us turn our attention to the mobility dependence on
quence was grown on a sapphire substrate by metalorgan('a(fectron density. Our system is of lower electron mobilit
chemical vapor depositiofMOCVD): 3 um GaN and 400 A o Y- y . Iy

. ; thus it is useful to compare our results with previous
nominally undoped AJ,4G, sN/GaN. The sample was first k1420 B\ changing th lied tack.0 f
rocessed into a 80080 um? Hall-bar-shaped mesa. Ti/Al/ work. y changing the applied gate voltage rom
EIi/Au ohmic contacts and AuPd front gate were r.nade b 3510 +05V, we can vary the electron density from

. ; nt g ¥3.11x 102 to 6.95¢<10cm™2 in our system. Figure (d)
conventional UV lithography. Experiments were performed

S ) , : hows the electron density as a functionyf. We can see
in a“He cryostat equipped with a superconducting magnet Ofhat the electron density shows a linear dependencé gn
a maximum field of 6 T. Four-terminal magnetoresistivity

. o : onsistent with a simple parallel-plate capacitor model. From
was measured using standard phase-sensitive techniques. &?é linear fit the depth of the 2DEG is estimated to be 640 A
changing the applied gate voltage, we are able to vary th%el

L ow the surface. This is somewhat larger than the as-grown
electron density in our system. Over our measurement range. . ness of the AlGaN layer 400 A. Our simple model al-
(—3.5V=Vy=<05V), the gate-2DEG leakage current is i

kept lower than 10 nA lows us to estimate the averaged distance between the 2DEG
pL : : ... and the AlGaN/GaN interface to be 240 A. This is not unex-
Figure 1 shows the four-terminal magnetoresistivity

. ) .2 pected since in a triangular quantum well, the maximum of
measurementg,, as a function of perpendicular magnetic . L S
) . . . the electron wave function distribution is at a certain distance
field atV,=0. The carrier density determined from the pe-

riod of the Shubnikov—de Haga$dH) oscillations and that ?hvéa?/nforgim th:s S:TJEZES?LT |2§2rf3§|(teé Izgl#(fzf::z\;vssure d
measured from the Hall effect are within 2.8% difference. y 9 ge.

These results, together with the fact that we only observe one

series of SdH oscillations, show that there is only one 2D
subband occupied in the GaN quantum well. 0.2120}
To further investigate the underlying physics of transport 0.2115}
in our GaN electron system, we study the Hall mobility de- _
pendence on temperature. Figure 2 shows the mobility asa g 0.2110¢
function of temperaturd at V3=0. For 20 ks T<190K, & 0.2105} \
the mobility increases with decreasing temperature. This is
consistent with a reduction in phonon scattering which plays 0.2100}
an important role in limiting the electron mobility in 11—V 0.2005}
semiconductors. It is interesting to note thatTex 20 K, the s,
mobility decreaseswith decreasing temperature. This is in 3 3 9 12 15

contrast to previous studi¥s® in which the Hall mobility
increases with decreasing temperature over the whole mea-
surement range. We ascribe this effect to Weak |O_CEl|I2atIOI’l I®IG. 3. p, as a function of temperature. There is a good linear fit over the
a weakly disordered 2D systehrﬁAs shown in Fig. 3 the temperature range (2K T<11K).

Temperature (K)
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& 7.0 T r . . ness is expected to diminish mobility with increasing elec-
£ g5l ] tron concentration as the electron wave function is pressed
No 6.0k (a) closely against the AlGaN/GaN heterointerface. At lower
o = ) electron densitiesn(< 4.65x 10'?cm™2), the measured elec-
; 5.5f ] tron mobility is found to be an increasing function of elec-
% 50 . tron concentration ag~n®3* This is consistent with re-
§ 45} - mote ionized impurity scattering in high-mobility AlGaN/
= a0f ] GaN electron systents; 23 although the measured exponent
-:’E’ 0.34 is somewhat smaller than the typical valQe7 — 1.5.
8 3.5t A ) A possible reason for this is that the mobility in our system is
3.0 approximately five times lower than those reported for a
2400 r . : . similar carrier density®*2%-24
2 230 (b) et " lil. CONCLUSION
> 2300 -, . _ _
g 2250[ . ] In conclusion, we have measured the transport properties
~ of a gated Al 1dGa gN/GaN heterostructure. At high tem-
52200- . . 1 peratures, the electron mobility decreases with increasing
'-g 2150} LI temperature due to an increase in phonon scattering. When
= 2100 . " the temperature is below 20 K, the electron mobilig-
) creasewith decreasing temperature due to weak localization
2050 - ) . 1 effects. This result clearly demonstrates the existence of
4 3 2 i 0 1 weak localization in a low-mobility GaN electron system.
Gate Voltage (V) Low-temperature measurements of the mobility dependence

on electron density were performed. The measured mobility
FIG. 4. (a) The electron density an@) electron mobility vs gate voltage at 1S found to be a decreasing function of carrier concentration
the temperaturd=4.3K asu~n~%3at high carrier concentration. Loss of mobility
with increasing carrier concentration is dominated by the in-
terface roughness scattering. At low carrier densities, the
electron mobility increases fromu=2060cnt/V s (n measured mobility is found to be an increasing function of
=3.11x10"cm™?) atVy=—3.5V up to the maximum mo- carrier concentration ag.~n%3% This is consistent with

bility ~x=2370cn?/Vs (n=4.65<10%cm ?) at Vy=  Coulomb scattering due to remote ionized impurities, though
—1.5V, and then decreases to=2120cn?/Vs (n=6.59  the measured exponent 0.34 appears to be lower than the
X10'%cm ?) atVy=+0.5V. typical value(0.7 — 1.5. A possible reason is that our device

In order to elucidate the underlying physics of the mo-mobility is approximately five times lower compared with
bility dependence on electron density, we plotuh(@s a other systems at a similar electron density. Further studies
function of In), as shown in Fig. 5. In our system at higher are required in order to understand the exact physical origin
electron concentrationn(>4.65< 10*2cm™2) the measured of the smaller exponer(0.34 observed in our low-mobility
electron mobility is found to be a decreasing function ofsystem.
electron concentratiop.~n~%3% The decreasing mobility
with increasing concentration is consistent with interfaceACKNOWLEDGMENTS
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