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Abstract
We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas
(2DEG) containing self-assembled InAs dots and compare the results with recent theoretical
predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary
disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase
transitions are presented, the former collapsing to the latter with decreasing gate voltage
and/or decreasing spin-splitting. The experimental results support a recent theory, based on
modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.

(Some figures may appear in colour only in the online journal)

1. Introduction

The magnetic-field-induced transitions observed in quantum
Hall (QH) systems [1–8] are good examples of second-order
quantum phase transitions [2, 3] described by scaling
theory [4, 5]. By tracing the temperature (T)-dependence
of the longitudinal and Hall conductivities σxx and σxy, the
T-driven flow diagram has been constructed for the transition
regions separating adjacent QH phases with increasing
perpendicular magnetic field B [5–9]. In such a diagram, the
unstable T-driven flow lines terminate at a critical point in
the magnetic-field-induced transitions, and other flow lines
tend towards the stable points corresponding to QH phases
with decreasing T . A connection between the QH effect
and the modular group was first suggested by Shapere and
Wilczek [10] and the correct subgroup of the modular group,

appropriate for odd denominators in the fractional quantum
Hall effect was identified by Lütken [11].

The modular group 0(1) is defined as the group of linear
fractional transformations of the upper half complex plane
which has the form

σ → (aσ + b)/(cσ + d),

where σ is a complex number, a, b, c, and d are integers,
and ad − bc = 1. Symmetric features such as the semicircle
law [12] are often referred to the modular symmetry within the
framework of the modular group. Interestingly, the semicircle
law [12] and universal critical conductivities [2, 3] are
expected in the temperature flow diagram based on the
modular symmetry [6–9] built from Landau-level addition
(σ → σ + 1), flux attachment (σ → σ/(2σ + 1)), and
particle–hole transformations (σ → 1 − σ̄ ) [1], where σ̄

10953-8984/12/405801+08$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/40/405801
mailto:ghkim@skku.edu
mailto:ctliang@phys.ntu.edu.tw
mailto:bdolan@thphys.nuim.ie
http://stacks.iop.org/JPhysCM/24/405801


J. Phys.: Condens. Matter 24 (2012) 405801 Y-T Wang et al

Figure 1. Modular symmetry and temperature (T)-driven flow
diagram in the longitudinal conductivity σxx and Hall conductivity
σxy plane. For a spin-degenerate (spin-split) system, the semicircle
curve in blue and the solid blue bullet point correspond (two
semicircle curves in black and the solid black bullets) to the
theoretically predicted σxy(σxx) at a low T and the unstable point.
With decreasing spin-splitting, it is predicted [15] that both black
bullets move toward (σxy, σxx) = ((2n+ 1)e2/h, 0), as indicated by
the black arrows. With reduced spin-splitting, the black bullets
merge into the red bullet and move along the line
σxy = (2n+ 1)e2/h, as indicated by the red arrows. When the
system becomes spin-degenerate, the unstable point is located at the
apex of the blue semicircle curve.

is the complex conjugate of σ = σxy + iσxx. The first
two transformations can be taken as the generators of the
group usually denoted by 00(2), a subgroup of the modular
group 0(1) which is also important in elementary-particle
physics [7], while the particle–hole transformation is an outer
auto-morphism of 00(2).

When spin-splitting is fully resolved, the T-driven
flow diagram following 00(2) modular symmetry has been
constructed for the magnetic-field-induced transitions in the
two-dimensional electron gases (2DEGs) in GaAs/AlGaAs
heterostructures [2, 6]. The black dashed curves in figure 1
illustrate such a flow diagram. The flow lines approach
the semicircles in the σxx–σxy plane with decreasing T . In
particular, the unstable flow lines converge towards the apexes
of the semicircles at low temperatures, such that σxx and
σxy become T-independent at the critical points indicated
by the two black bullets. The modular symmetry, however,
can be reduced to 0(2) when the resolved spin-splitting
is small [6, 13–15]. The semicircle law remains valid
under 0(2) symmetry, but the unstable critical points can
deviate from the apexes of the semicircles [6, 15, 16].
When the spin-splitting is further reduced, the diameters
of the semicircles should double for the spin-degenerate
magnetic-field-induced transitions, whereas the T-driven flow
diagram has features of 00(2) symmetry again, as indicated by
the blue semicircle and the blue bullet shown in figure 1 [15].
In this paper the spin-degenerate symmetry is denoted by
00(2) as described in [15]. The features of 00(2) and 00(2)
have already been observed [6, 11–13], but more studies are
necessary to clarify how the modular symmetry changes from
00(2) to 0(2) and 00(2) as the spin-splitting is varied.

The red arrow and bullet in figure 1 show how the
two spin-resolved critical points corresponding to the same
Landau-index n merge to the single spin-degenerate one as
the spin-splitting is suppressed [15]. Here n = 0, 1, and
2, . . . correspond to the ground, first excited, second excited
Landau bands, and so on, respectively. In figure 1 we
assume that the spin-splitting is fully resolved such that
the two critical points are located at (σxy, σxx) = ((4n +
3)e2/2h, e2/2h) and ((4n + 1)e2/2h, e2/2h), where e and h
are the electron charge and Planck constant, respectively. With
decreasing spin-splitting, the right critical point moves to the
left along the spin-resolved semicircle

(σxx − e2/2h)2 + [σxy − (4n+ 3)(e2/2h)]2 = (e2/2h)2, (1)

such that the corresponding critical Hall conductivity is
reduced, although there can be bowing effects. The left
critical point moves to the right along the other spin-resolved
semicircle

(σxx − e2/2h)2 + [σxy − (4n+ 1)(e2/2h)]2 = (e2/2h)2, (2)

becoming closer to the right one if bowing effects are
negligible. With reduced spin-splitting, these two critical
points merge to a single one as their critical Hall
conductivities approach (2n+ 1)e2/h. It should be noted that
for 00(2) the flow lines do not approach the semicircle

(σxx − e2/h)2 + (σxy − (2n+ 1)e2/h)2 = (e2/h)2 (3)

when the spin-splitting collapses. In this case, the
particle–hole symmetry remains valid and the unstable flow
line is expected to lie on the vertical line σxy = (2n+ 1)e2/h.
Therefore the critical point can be located on the red bullet
in figure 1. The critical point can move upward along σxy =

(2n+1)e2/h with a further reduction of the spin-splitting. The
semicircle law for 00(2) becomes valid after the critical point
reaches the blue circle, which is located at the semicircle given
by equation (3). To understand the effects of spin-splitting
on the modular symmetry and temperature flow diagrams,
we will study experimentally the traces of the critical points
shown in figure 1. The predictions of modular symmetry are
quite robust and varying the detailed assumptions still leads to
similar flows [17].

To study the scaling theory under varying spin-splitting,
we have re-analysed the data published in [18] to construct
the T-driven flow lines in the σxx–σxy plane. Previous
studies show [18] that both types of magnetic-field-induced
transitions, plateau–plateau (P–P) and insulator (I)-QH
transitions, are observed at low T as the perpendicular
magnetic field B is swept. In the following we denote each P–P
transition by its adjacent QH states, for example, the transition
separating the ν = 1 and ν = 2 QH states is denoted as a 2–1
or 1–2 transition. In addition, the 0 − ν transition describes
the I-QH transition where the 2DEG enters the ν QH state
directly from the insulator designated by n = 0. Decreasing
the gate voltage reduces the spin-splitting by enhancing the
strength of the disorder [19], and the following observations
support the predictions described in [15] about spin effects on
the modular symmetries:
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(a) (b)

(c)

Figure 2. T-driven flow lines of the (a) 0–2 transition, (b) 1–0 transition, and (c) 2–1 transition regions for Vg = −0.264 V. The dashed
curves indicate the theoretically predicted semicircles, and the arrows indicate the flow lines to the low measurement temperatures at a fixed
magnetic field. The black bullets indicate that with decreasing temperature, an approximately T-independent σxy is observed. The dotted line
serve as a guide to the eye showing that σxy is T-independent close to the predicted values of (a) e2/2h, (b) e2/h, and (c) 3e2/2h, respectively.

(1) The spin-resolved and spin-degenerate transitions are
governed by 00(2) and 00(2) modular symmetries,
respectively.

(2) The unstable T-driven flow line is along σxy = e2/h
when the 2–1 and 1–0 transition collapses into the 2–0
transition, consistent with particle–hole symmetry even
when the semicircle law is invalid.

(3) The critical Hall conductivity in the 2–1 transition
decreases continuously from 3e2/2h to e2/h in the00(2)−
0(2)− 00(2) crossover, in agreement with theory [15].

(4) There is no clear critical point in the 1–0 transition as the
ν = 1 QH state is almost destroyed, although the 2DEG
remains insulating for σxy < e2/2h. Therefore, the critical
Hall conductivity, if it exists, should become greater than
e2/2h before such a transition is replaced by the 2–0
transition.

The device used in this study is a gated GaAs/AlGaAs
heterostructure in which disorder is provided by InAs
quantum dots and has been studied before [18]. In section 2
we focus on the case when the 0–2, 2–1 and 1–0 transitions
are all observed at a certain gate voltage. The effects of

varying the gate voltage and/or disorder on the 2–1 and 1–0
transitions are presented in sections 3 and 4. In section 5
we investigate the temperature-driven flow lines in the 2–0
transition. Discussion and conclusions are made in sections 6
and 7, respectively.

2. Temperature flow diagrams following 00(2) and
00(2) modular symmetries

At low magnetic fields, the sample behaves as an
insulator [18], in the sense that the longitudinal resistivity
decreases with decreasing temperature, dρxx/dT < 0. At Vg =

−0.264 V, there is no spin-resolved QH state for B < 1.4 T
and the sample undergoes a spin-degenerate 0–2 transition
at the critical magnetic field B0–2

c = 1.13 T, where ρxx is
T-independent. The expected universal value h/2e2 indicates
that we do not need to renormalize ρxx for gated 2DEGs [6].
With increasing B, the spin-resolved QH state at ν = 1 appears
and the 2DEG then undergoes a 1–0 transition at the critical
field B1–0

c = 3.42 T. In addition to the 0–2 and 1–0 transitions,
the 2DEG undergoes a 2–1 transition. Figures 2(a)–(c) show
the constructed temperature flow diagrams for the 0–2, 2–1
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(a)

(b)

Figure 3. The conductivities σxy(B) at various T for
Vg = −0.264 V in (a) the 1–0 transition and (b) the 2–1 transition.
The dotted lines indicate that temperature-independent σxy are
observed at the expected values of (a) e2/2h and (b) 3e2/2h,
respectively.

and 1–0 transitions after the resistivities have been converted
to conductivities using σxx = ρxx/(ρ

2
xx + ρ2

xy) and σxy =

ρxy/(ρ
2
xx + ρ

2
xy). In figure 2, each flow line is constructed by

tracing (σxy, σxx) with respect to the temperature at a specific
magnetic field, and the arrows indicate the flow direction with
decreasing T .

In figures 2(a) and (b), the vertical dotted lines denoting
the T-driven flow lines at the critical magnetic fields B0–2

c and
B1–0

c are the unstable ones. Figure 2(b) shows that the flow
lines to the right and left of the apex flow towards the expected
stable points at (e2/h, 0) and (0, 0) along the semicircle
described by equation (2) with n = 0. In addition, there is
unstable flow close to the apex at (σxy, σxx) = (e2/2h, e2/2h).
Therefore, the temperature flow diagram for the 0–1 transition
has the characteristics of 00(2) symmetry. Figure 3(a) shows
that the curves of σxy at different temperatures intersect at the
critical point, which is indicated by the dotted line, because
σxy is T-independent at such a point as expected. Figure 2(a)
shows that the T-driven flow lines on the right hand side
of the unstable one are along the semicircle described by
equation (3) with n = 0. Therefore, the 0–2 transition can
be assigned 00(2) rather than 00(2) modular symmetry, since
there is no spin-resolved state at low B.

The expected semicircle for the 2–1 transition is given
by equation (1) with n = 0, where the apex has critical
longitudinal and Hall conductivities of σ c

xx = e2/2h and σ c
xy =

3e2/2h. Figure 3(b) shows that σxy is T-independent at the
point B2–1

c when σxy ∼ 1.5 e2/h, which is expected under
00(2) symmetry. In figure 2(c), the unstable flow occurring
for σxy ∼ 1.5 e2/h does not converge to the apex of the
semicircle for the 2–1 transition, since over this range σxx
is not T-independent and is smaller than 0.5 e2/h. We
note that σxy and σxx correspond to the coefficients of the
topological and kinetic terms, respectively, where the first
term is important in constructing the phase diagram of the
quantum Hall effect [13]. As reported previously [13], the
temperature flow features in σxy can be more robust than
those in σxx, and the critical Hall conductivity indicates
the 00(2) symmetry in the 2–1 transition. Therefore it is
useful to study σxy(T) at different magnetic fields, and
figure 4(a) shows the T-independent behaviour (dotted) of
σxy at B2–1

c separating the two regions in the T-σxy plane
expected from scaling theory: the lower region corresponds
to the ν = 1 QH state, whereas the upper one corresponds
to the ν = 2 QH state. For T < 0.45 K, σxy increases in
the upper region and reaches the quantized value 2e2/h,
whereas σxy decreases in the lower region and approaches
e2/h as T → 0. At Vg = −0.264 V, 00(2) symmetry can
be identified in the spin-resolved 2–1 and 1–0 transitions,
whereas the temperature flow diagram for the spin-degenerate
0–2 transition has features of 00(2) symmetry.

3. The critical Hall conductivity of the 2–1 transition
at different gate voltages

At Vg = −0.264 V, see figure 4(a), the value of the critical
Hall conductivity suggests that the 2–1 transition exhibits
00(2) symmetry. So at low temperatures σxy converges to
∼3e2/2h, between the two quantized conductivities for the
ν = 1 and 2 QH states. Decreasing the gate voltage to
−0.280 V increases the disorder [18], and the 2–1 and 1–0
transitions merge to the 2–0 transition. Figure 4(b) shows that
at Vg = −0.280 V σxy is T-independent with a value of e2/h,
the expected critical value for the 0–2 transition under 00(2)
symmetry.

Figures 4(c)–(e) show the T-dependence of σxy for
−0.276 V ≤ Vg ≤ −0.272 V. In these diagrams, we
investigate the 2–1 transition before it merges with the 1–0
transition. At low temperatures, the T-independent curves
(indicated by the horizontal dot lines) appear at σxy ∼ 1.45,
1.33, and 1.23 e2/h when the gate voltage is decreased from
−0.272 V,−0.274 V, to −0.276 V, respectively. Therefore
figures 4(a)–(e) show that the critical Hall conductivity σ c

xy of
the 2–1 transition decreases from 3e2/2h towards e2/h and
then the 2–1 transition merges with the 1–0 transition. The
critical values 3e2/2h and e2/h are the expected ones for the
spin-resolved 2–1 and spin-degenerate 2–0 transitions under
00(2) and 00(2) symmetries, respectively, and the continuous
decrease of σ c

xy supports the prediction [15] on the appearance
of reduced modular symmetry 0(2).
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Figure 4. The conductivities σxy for a fixed B at various T for (a)
Vg = −0.264 V, (b) Vg = −0.280 V, (c) Vg = −0.272 V, (d)
Vg = −0.274 V, and (e) Vg = −0.276 V, in the 2–1 transition
region. The solid lines join the data points in σxy. The dotted lines
are guides to the eye, indicating that σxy is almost T-independent at
low temperatures.

The ν = 1 QH state is due to spin-splitting, which is much
smaller than the cyclotron gap that produces the ν = 2 QH
state in GaAs-based 2DEGs. With decreasing gate voltage

(increasing disorder), it is reasonable to expect that the spin
gap will be destroyed before the cyclotron gap. From the
minima of ρxx (σxx) in the ν = 1 QH state, we can see that the
spin-splitting is reduced under the increase of the disorder.

4. The critical Hall conductivity in the 1–0 transition

At Vg = −0.280 V, there is no ν = 1 QH state and the
2DEG undergoes a 2–0 transition to become a high-field
insulator. Figure 4(b) shows that for 0 < σxy < e2/h, σxy
decreases with decreasing T since the 2DEG is an insulating
phase. At Vg = −0.264 V, a ν = 1 QH state exists and
the 2DEG undergoes 1–0 transition rather than the 2–0
transition. Figure 5(a) shows that at Vg = −0.264 V, σxy is
T-independent near 0.5 e2/h, the expected critical value under
00(2) symmetry. For the 2–1 transition, σ c

xy decreases from
∼1.5 e2/h to 1.33 e2/h as Vg is decreased from −0.264 V
to −0.274 V as shown in figures 5(a)–(c). In contrast, for the
1–0 transition the corresponding σ c

xy = (0.5± 0.05) e2/h and
thus remains ∼0.5 e2/h. Therefore the 1–0 transition satisfies
00(2) symmetry, whereas the reduced modular symmetry
0(2) should be taken into account in the 2–1 transition. In our
system, the 1–0 transition is observe at a higher magnetic field
than that for the 2–1 transition. Therefore the spin-splitting
for the 1–0 transition can be larger than that for the 2–1
transition. In this case, the 1–0 transition can be described
by 00(2) symmetry, and there is no reduction on the modular
symmetry.

In our study, the 1–0 transition occurs at Vg = −0.274 V,
and merges with the 2–1 transition to become a 2–0 transition
at Vg = −0.280 V. Figure 5(d) shows that σxy is almost
T-independent for (0.5–0.9) e2/h at Vg = −0.276 V. We note
that a quantum phase transition is defined as T approaches
zero, whereas experiments are always performed at finite
temperatures. Therefore finite temperature effects should be
considered in a real system. Although 0(2) symmetry can be
identified in the 2–1 transition at Vg = −0.276 V, there could
be competition between 0(2) and 00(2) symmetries in the
1–0 transition because the spin-splitting is larger for 00(2).
If there was competition, there would be no clear transition
point at finite temperatures and thus the Hall conductivity
would be T-independent over a wide range of magnetic
field at Vg = −0.276 V. The bowing effects [13] resulting
from 0(2) symmetry could also exist in the competition.
Figures 5(a)–(c) shows that σ c

xy can be slightly below e2/2h.
At Vg = −0.276 V, σxy decreases with decreasing T when σxy
becomes smaller than 0.5 e2/h, and hence the T-independent
critical point, if it exists, will not decrease to become smaller
than e2/2h. So the critical Hall conductivity should have the
tendency to increase from∼e2/2h to e2/h as predicted in [15].

5. The temperature-driven flow lines in the 2–0
transition

In addition to the 2–1 and 1–0 transitions, we have observed
a 0–2 transition at lower B at Vg = −0.264 V. When the
gate voltage is decreased, the spin-splitting is not observed
and thus the corresponding T-driven flow lines show 00(2)
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Figure 5. The conductivity σxy for a fixed B at various T for (a)
Vg = −0.264 V, (b) Vg = −0.272 V, (c) Vg = −0.274 V, and (d)
Vg = −0.276 V in the 1–0 transition region. The solid lines join the
data points in σxy. The dotted lines are guides to the eye, indicating
that σxy is almost T-independent at low temperatures.

symmetry as the 2DES enters ν = 2 QH state from the
insulator at low B. Figure 6 shows the T-driven flow diagram
at Vg = −0.280 V. The flow lines in the 0–2 transition are
close to the upper semicircle defined by equation (3) with n =
0, and the directions of flow are opposite for σxy < e2/h and
σxy > e2/h. Therefore 00(2) symmetry is valid for the case
at Vg = −0.280 V. In addition, the unstable point is located
near the apex (σxy, σxx) = (e2/h, e2/h) of this semicircle. So
the critical longitudinal and Hall conductivities are of the
expected universal values at low B, whereas the critical points
at high B depend on the spin-splitting.

Figure 6. The red curves correspond to σxy(σxx) at the lowest
temperature of 0.03 K. The dashed curves and line are the expected
semicircles and vertical one along σxy = e2/h, respectively. The
different colours denote the temperature flow at a specific magnetic
field from the highest to the lowest temperature, as indicated by the
arrows. The black bullet at the apex corresponds to the critical
unstable point in the low-field 0–2 transition. The red bullets on the
straight line σxy = e2/h correspond to case when the 2–1 and 1–0
transitions merge into the 2–0 transition.

It should be noted that at Vg = −0.280 V, there is an
additional 2–0 transition due to the collapse of the 2–1 and
1–0 transitions. It is predicted [15] that σxx < e2/h and the
critical point is expected to leave the semicircle as the collapse
occurs. Unstable flow is expected along σxy = e2/h due to
particle–hole symmetry for 0(2) and 00(2). Figure 6 shows
the flow lines in the transition resulting from the collapse are
not along any semicircle (although semicircles are still flow
lines, the critical point no longer lies on these semicircles
after the collapse). Moreover, the flow line along σxy = e2/h
is the unstable one because the flow directions are opposite
for σxy < e2/h and σxy > e2/h. Furthermore, the longitudinal
conductivity σxx is smaller than e2/h along the unstable
flow. So our experimental study supports the prediction on
particle–hole symmetry, even when the semicircle law is not
valid [15].

As a result of the particle–hole symmetry, the flow lines
in the 2–0 transition are expected to be symmetric with respect
to the vertical line σxy = e2/h in the σxy–σxx plane [6, 13,
15]. In contrast, figure 6 shows that the flow lines for the
2–0 transition are asymmetric with respect to σxy = e2/h;
this asymmetry could be caused by the spin-splitting which
varies with gate voltage. A full description probably requires
a three-dimensional flow, with Zeeman energy as a third
axis. The particle–hole symmetry, in fact, is important to the
appearance of the unstable flow along σxy = e2/h. We note
that in [19], the flow diagram symmetric to σxy = e2/h can be
obtained when the ν = 1 QH state appears with decreasing T .

6. Discussion

It was proposed that the collapse of spin-splitting in the integer
quantum Hall effect is due to disorder broadening of Landau

6
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(a)

(b)

Figure 7. (a) Longitudinal and Hall resistivities ρxx(B) and ρxy(B)
as a function of magnetic field for Vg = −0.264 V and T = 0.21 K.
There is a peak in ρxx for B ∼ 2 T separating the ν = 2 and
ν = 1 QH states characterized by the quantized Hall plateaus. (b)
ρxx(B) and ρxy(B) for Vg = −0.274 V and T = 0.18 K. There is no
peak in ρxx separating the ν = 2 and ν = 1 QH states, even though
the ν = 2 and ν = 1 plateaus can be seen in ρxy.

levels [20], and this is what we observe. In our system,
with more negative gate voltage (increased disorder), the
spin-splitting collapses near−0.280 V ≤ Vg ≤ −0.276 V and
the ν = 1 QH state disappears. Therefore, for Vg ≤ −0.276 V
we observe a 2–0 transition instead of a 2–1–0 transition, in
agreement with the Folger–Shklovskii model [20].

When the spin-splitting is fully resolved, see figure 1,
the two critical points are located at (3e2/2h, e2/2h) and
(e2/2h, e2/2h) for n = 0. These two points approach the point
(e2/h, 0), which corresponds to the ν = 1 QH state, along
the semicircles described by equations (1) and (2) as the
spin-splitting is reduced but still can be resolved. The QH state
occurs between the two critical points when the Fermi energy
is in the localized states, and the width of the QH state in B is
determined by the distance between the two critical points.
Therefore a poorly developed ν = 1 QH state is expected
at finite temperatures when the critical points are close to
(e2/h, 0). To probe the poorly-defined QH state, figures 7(a)
and (b) show the curves of ρxx and ρxy for Vg = −0.264 V and
T = 0.21 K and Vg = −0.274 V and T = 0.18 K, respectively.

Figure 8. Longitudinal and Hall resistivities ρxx(B) and ρxy(B) as a
function of magnetic field for Vg = −0.264 V at various T .

In figure 7(a), there is a peak in ρxx at B ∼ 2 T separating
the ν = 2 and 1 QH states characterized by their quantized
Hall plateaus. In addition, 00(2) symmetry is observed in
both the 2–1 and 1–0 transitions. With decreasing disorder, the
decrease of the critical Hall conductivity of the 2–1 transition
shows that the modular symmetry is reduced to 0(2) when
−0.274 V < Vg < −0.268 V. Figure 7(b) shows that at Vg =

−0.274 V there is no peak in ρxx separating the ν = 2 and
1 QH states, even though the ν = 2 and 1 plateaus can be
observed in ρxy. We note that the position of the minimum in
ρxx at ν = 2 in B is slightly higher than that of the mid-point of
the ν = 2 QH plateau. Such a result is not caused by a carrier
density inhomogeneity in our sample. The reason for this is
that, as shown in figure 8, we have observed well-defined
temperature-independent points in ρxx which correspond to
insulator-quantum Hall transitions at various gate voltages.
Such data cannot be obtained in an inhomogeneous sample
since for different carrier densities, there should be different
crossing points in ρxx. Moreover, figure 8 shows that there is
only a single period of the observed Shubnikov–de Haas-type
oscillations over the whole measurement range. All these
results demonstrate that the carrier density in our device is
uniform. A possible reason for the difference between the
ρxx minimum and the centre of the ν = 2 QH plateau are
electron–electron interactions, which are known to cause a
correction to the Hall resistivity and to increase the Hall slope
with decreasing temperature [21]. This effect is shown in
figure 8, which shifts the centre of the ν = 2 QH plateau to a
lower B, causing it to not coincide with the ρxx minimum in B.

We note that the quantum Hall effect in ρxy can be
observed without there being a zero in ρxx [22–26], and
figure 7(b) shows that it may become difficult to identify
the poorly-defined QH state in ρxx. Although the ν = 1 QH
state should correspond to the T-independent point at σxy =

e2/h, such a point can deviate from the expected value when
this QH state is not well-defined [27]. Moreover, the weak
T-dependence of σxy, see figure 5(d), shows that σxy can
be T-independent over a wide range in B although discrete
T-independent points are expected. The collapse of the 2–1
and 1–0 transitions takes place when the two critical points
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merge, but it is not clear why this occurs. Nevertheless this
study reveals that the T-independent Hall conductivity is
observed over a wide range of B, rather than at a single
transition point, under competition between 00(2) and 0(2)
symmetries. We note that the critical points are expected to
show an abrupt change on the vertical line σxy = e2/h under
the collapse of the 2–1 and 1–0 transitions [15]. This study
shows that the unstable flow is along σxy = e2/h, when the
2–0 transition is replaced by the 2–1 and 1–0 transitions.

7. Conclusion

We have studied temperature flow of a highly-disordered
gated two-dimensional electron gas with tunable disorder
and/or spin-splitting. At Vg = −0.264 V, we observe a
0–2–1–0 transition. At low magnetic fields, the 0–2 transition
is consistent with 00(2) symmetry. With increasing magnetic
field, the 0–1 transition is compatible with 00(2) symmetry.
With increasing disorder, it appears that the 2–1 transition
changes from 00(2) to 0(2) symmetry when the spin gap
becomes smaller. In addition, our experimental results show
that the critical point in σxy moves from 3e2/2h towards e2/h.

We note that the case for the 0–1 transition is not clear.
It appears that the critical point or unstable flow stays at
around σxy = e2/2h with decreasing spin gap. A possible
reason is that the 0–1 transition occurs at a higher magnetic
field compared to the 2–1 transition. Therefore the mixing of
spin and disorder may be less significant for the 1–0 transition
compared with the 2–1 transition. We note that the unstable
flow shows an abrupt change to σxy = e2/h with σxx < e2/h
when the 1–0 transition merges with the 2–1 transition, which
supports the prediction based on the modular symmetry 0(2),
with particle–hole symmetry, for the unstable flow when
the spin-splitting becomes unresolved [15]. In addition, the
T-dependence of σxy at Vg = −0.276 V indicates that the
critical point will not occur for σxy < 0.5 e2/h and thus should
be larger than 0.5 e2/h, if it exists, before the 1–0 transition to
be replaced by the 2–0 transition. Therefore, our observation
supports the prediction on the critical Hall conductivity with
varying spin-splitting.
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